Hero image

520Uploads

201k+Views

107k+Downloads

Flying by numbers with the lift equation
IETEducationIETEducation

Flying by numbers with the lift equation

(0)
In this lesson, learners will apply the lift equation to carry out a real-world aircraft design activity. This will support their understanding of: manipulating the subject of equations; using equations; interpreting data presented in tables and graphs. This is one of a set of resources produced in conjunction with the engineering company Arconic. The resources are designed to support teaching of key engineering concepts at both key stage 3 and key stage 4, including the GCSE in Engineering. This resource focuses on the application of maths in engineering. This could be used as a one-off main lesson activity, as an introductory lesson to a wider unit of work focussing on aerodynamics or as part of a scheme on aircraft design using all of the resources developed in association with Arconic. Activity: Writing flowchart programs to meet a given design brief Students will firstly view our Flying by Numbers presentation to make sure that they understand the concept of lift and the lift equation. Using the information from within this presentation, they will change the subject of the formula to make wing area and velocity the focus, and then interpreting data using the tables and graphs that have been provided. Download our activity overview and presentation for a detailed lesson plan on how to write a flowchart program to meet a given design brief. What is the lift equation? The lift formula is as follows: L = d x v2 x s x CL / 2 Where: L = lift; for level flight this equals the weight of the aircraft d = density of the air. This changes with altitude – the higher you get, the ‘thinner’ (less dense) the air is v = velocity of the aircraft s = wing area of the aircraft CL = coefficient of lift. This is read from a graph Wing area: s = 2 L / (d x v2 x CL) Velocity: v = √(2L / (d x s x CL )) The engineering context This lift equation is used by aerospace designers to determine the necessary characteristics of an aircraft so that it can fly. Suggested learning outcomes This lesson will teach students how to manipulate the subject of a formula. They’ll be able to use a formula and interpret data in tables and graphs. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Design a sustainable aircraft
IETEducationIETEducation

Design a sustainable aircraft

(0)
Understand sustainability issues in engineering and how these are applied when designing a product This is one of a set of resources produced in conjunction with the engineering company Arconic. The resources are designed to support teaching of key engineering concepts at both KS3 and KS4, including the new GCSE in Engineering. This resource focuses on designing a sustainably powered aircraft for the future. In this activity, learners will design a sustainably powered aircraft of the future. They will learn about the alternatives to using petrochemicals to power aircrafts. It will build understanding of sustainability issues in engineering and how these are applied when designing a product. This activity will also encourage students to get creative as they design a sustainable, but aesthetically pleasing aircraft. This could be used as a one-off main lesson activity, as part of a wider unit of work focusing on sources of energy and sustainability issues in engineering or as part of a scheme on aircraft design using the resources developed in association with Arconic. It is intended that learners complete this activity as individuals. Some prior understanding of sustainability issues and energy generation methods may be advantageous. Tools/resources required Projector/Whiteboard Basic drawing equipment CAD software (if producing final design using CAD) The engineering context Sustainable design and the use of finite and non-finite resources is required learning as part of both the new Design and Technology and Engineering 9-1 GCSE courses. The knowledge gained can also be used when selecting sources of energy for future product and system designs. Suggested learning outcomes By the end of this activity students will know that oil is a non-renewable, finite resource, they will be able to understand and apply sustainable alternatives to petrochemicals for powering aircraft and they will be able to communicate design ideas using sketches, notes and annotations. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Marshmallow catapults
IETEducationIETEducation

Marshmallow catapults

(0)
**In this fun activity for kids, students will construct a miniature catapult capable of firing a marshmallow! ** This exercise will allow students to develop practical skills using a saw and a glue gun and their communication skills as they work as part of a team. This activity could be used in Key Stage 2 as a straightforward design and technology project. It could also be integrated with history and drama. This activity will take approximately 100-180 minutes to complete. Tools/resources required For the marshmallow holders: Copies of the marshmallow catapults holder (handout) printed on card Scissors Glue sticks For the catapult structures: Square section softwood: 8 x 8 x 590 mm, 6 pieces per team plus spares Saws Vices, bench hooks, mitre boxes or similar devices to secure the wood when cutting Glue guns (one per team) 2 elastic bands per team (one small, one large) plus spares For testing: A bag of marshmallows Optional: Copies of the marshmallow catapults structures (handout) printed on paper Sandpaper Baseboards or A3/A4 pieces of cardboard for use as baseboards when using glue guns The engineering context Did you know that the word ‘engineer’ was initially used to describe people responsible for building siege weapons in ancient times? During the sieges of towns and castles, it was customary for skilled experts to construct catapults to breach defences and demoralise the defenders. Among the various catapult types, one was known as the ‘onager’, named after a wild donkey renowned for its fierce kick. The individuals responsible for building this particular catapult were referred to as ‘onager-neers’, a term that eventually evolved into engineers. Catapults need to have a structure which is both strong and stiff. Otherwise, the forces they experience when used can cause them to break. A catapult made from square shapes can be made significantly more rigid and less likely to collapse by adding reinforcement to form triangles. The principle is still widely used in civil engineering for structures ranging from cranes to aircraft structures and the roofs of buildings. Suggested learning outcomes By the end of this activity, students will be able to understand that triangles can be used to reinforce structures, they will be able to safely operate a saw to cut wood, safely use a glue gun, and they will be able to design and make a structure. All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Build a car that moves
IETEducationIETEducation

Build a car that moves

(1)
Learn how to make the base of a moving vehicle from card Build a car with axles that moves! Budding inventors engineer the base and body for a model car made from card with wheels and axles. This is a fun practical activity for participants to make a simple 3D shape from a 2D net. The KS1 DT activity then introduces axles and wheels to enable the car to move. Activity info, teachers’ notes and curriculum links In this activity, pupils will make the base of a moving vehicle to understand how cars are designed and how axles work to allow cars to move. Download the free resources! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Tools/resources required Copies of the car base handout, printed on card, 1 per pupil (plus spares) Axles, 2 per pupil – for example, wooden skewers Plastic tubing – this can be short sections cut from drinking straws Wheels, 4 per pupil Scissors Glue sticks Optional: Sticky tape or double-sided sticky tape Hole punches (ideally single hole punches) Coloured pencils Pre-made model of the base, for demonstration (this could be made large size, for example by printing out on A3 card) Download the activity sheets for free! The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales And please do share your classroom learning highlights with us @IETeducation
Design a model car and wheel axle
IETEducationIETEducation

Design a model car and wheel axle

(1)
Design an experiment to test how long it takes a vehicle to move down a slope In this series of activities, pupils will learn about nets and wheels and axles. They will combine these technologies to make the base and body for a vehicle made from card, finishing by evaluating the performance of the assembled vehicle. This activity evaluates the performance of the vehicle previously manufactured by the pupils. It involves recording the time taken by each vehicle to go down a slope. This can be converted into the speed of the vehicle. It could be used at Key Stage 1 or 2 to develop an understanding of the use of testing and numeracy skills. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. Please do share your highlights with us @IETeducation
Spaghetti tower - strengthening structures
IETEducationIETEducation

Spaghetti tower - strengthening structures

(0)
Making the tallest structure The shape of a structure has a significant effect on its strength and its stiffness. A structure made from squares can be made significantly more rigid and less likely to collapse by adding reinforcement to form triangles. This principle is widely used in civil engineering when designing new bridges and buildings. In this activity, pupils develop both their skills in using a glue gun and demonstrate their understanding of how structures can be reinforced, by making a structure from spaghetti. In this activity, participants begin by predicting how a square structure would affect the properties of a building and for any suggestions as to how it could be made stronger. Then working in teams, pupils have 15 minutes to build a structure from spaghetti. This is a competition – the tallest structure wins. The structure must be free-standing – that means nothing else can support it. Each team can only use 12 pieces of spaghetti – they can break some of it into smaller lengths if needed to reinforce the structure. Once the fifteen minutes has passed, each team reviews the structures, comparing which is the tallest and identifying how each structure could have been made stronger or taller. Activity info, teachers’ notes and curriculum links This activity teaches transferable skills to the construction industry and beyond. This activity could be used in Key Stage 2 as a stand-alone activity, as a focused task to develop skills in the use of the glue gun, or as an introduction to a design and make project, such as the spaghetti bridges. If the view of the teacher is that their pupils do not have sufficient maturity to use the glue guns, this activity could be carried out using spaghetti and marshmallows – an example of this is included in the additional websites. Download the free resources! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Spaghetti bridge
IETEducationIETEducation

Spaghetti bridge

(0)
Building a bridge from spaghetti Working in teams, participants have 45 minutes and 15 pieces of spaghetti to build a bridge. How to make a bridge? Teamwork with spaghetti! After this time, the structures are put to the test to see which is the strongest by hanging an increasing load from each bridge until it fails. Bridges are structures that are designed to support a load, such as the cars and lorries that need to cross above a river. The structure of a bridge has a significant affect upon its strength and its stiffness. A bridge made from square shapes can be made significantly more rigid and less likely to collapse by adding reinforcement to form triangles. This principle is widely used in civil engineering. Activity info, teachers’ notes and curriculum links This activity could be used in Key Stage 2 as a stand-alone design and technology or maths activity, as a focused task to develop skills in the use of the glue gun, or as part of a structures project investigating bridges. This hands-on STEM playing and learning resource is science and maths for KS2. Tools/resources required 1-2 packets of spaghetti Glue guns (one per team) Optional: Baseboards or A3/A4 pieces of cardboard for use as baseboards when using glue guns Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your classroom learning highlights with us @IETeducation
How to make a simple electronic switch
IETEducationIETEducation

How to make a simple electronic switch

(0)
Learn how electronic switches work and assemble a variety of different switches in this fun and engaging STEM activity! This is a free resource that could be used in KS2 as an extension to an activity to introduce circuits, or to support a design and make project, such as the doorbell activity or adding a motor to the ‘cardboard cars’ activity. This activity will take approximately 70-90 minutes. Tools/resources required Projector/Whiteboard 4 x AA batteries in holder Buzzers (e.g. Miniature Electronic Buzzer 6v) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires) 4 metal split pin fasteners and 1 paper clip per pupil A5 pieces of card (can be cut to A6 for backing of the paper clip switch and 2 x A7 for the folded and foil switch) Metal foil Sticky tape or electrical insulation tape. (Potential sources for the components include Rapid or TTS Group) If needed: Wire cutters/strippers Optional: Hole punches (ideally single hole punches) Scissors Pre-made models of each switch, for demonstration Electronic switches An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. There are a wide variety of different types of switches that can be used. The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers. Suggested learning outcomes By the end of this activity students will be able to construct an electrical switch, they will have an understanding that a complete circuit is required for electricity to flow, and they will be able to construct an electrical circuit. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a simple electrical circuit
IETEducationIETEducation

How to make a simple electrical circuit

(0)
In this activity pupils will assemble a simple electric circuit. This is a great way for KS2 students to develop an understanding of how electric circuits function. This free resource could be used in KS2 as an engaging stand-alone activity to introduce circuits, as an introduction to a design and make project (such as the doorbell activity) or as an extension to add a powered element to another design and make activity (such as adding a motor to the ‘cardboard cars’ activity). This activity will take approximately 50-60 minutes. Tools/resources required Projector/Whiteboard Components: 2 x AA batteries in holder Electric motor (e.g. 3V 13100 Rpm DC Motor) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used) Either: 2 metal split pin fasteners and 1 paper clip per pupil, or one switch per pupil Sticky tape or electrical insulation tape. If needed: wire cutters/strippers (to cut excess wire lengths) (Potential sources for these components include Rapid online and TTS group) Optional: Hole punches (ideally single hole punches) Pre-made models of the circuit, for demonstration Electrical circuits An electrical circuit is a group of components that are connected together, typically using wires. The wires are typically copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e., have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches make a gap in the circuit to stop electricity flowing when they are open. The components included in an electric circuit could range from motors, light sources and buzzers to programmable integrated circuits. The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in homes to televisions and computers. Suggested learning outcomes By the end of this activity students will be able to construct an electrical switch, they will understand that a complete circuit is required for electricity to flow and they will be able to construct an electrical circuit. Download the free How to make a simple electrical circuit activity sheet! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Moving pictures with levers and sliders
IETEducationIETEducation

Moving pictures with levers and sliders

(0)
Simple sliders and levers can be used to create movement in a picture. This activity teaches participants how levers and sliders work and how they can be used to create an engaging moving picture in a card or a book. How can I teach levers and sliders? This could be used in Key Stage 1 as a stand-alone activity or as a KS1 introduction to a design and technology project, such as: a greetings card - for example, a Christmas card where Santa’s sleigh moves across the sky a story detailing a journey – for example, inspired by a book they are reading (such as ‘We’re going on a bear hunt’); alternatively, this could be a fictional journey of their own devising the development of the book could be carried out as a class activity where each table or group of pupils works together to produce one or two pages, contributing to the book produced by the full class. This could also be linked to a story-writing activity in literacy a moving display - for example, charting the different activities carried out during a day, where the slider or lever indicates the changing time. On completing either model, pupils could also apply colour to their mechanism or add details to the background. Tools/resources required Copies of the moving pictures handout, printed on card, 1 per pupil (plus spares) Plain card (for the simple slider and lever backgrounds) Split pin-type metal fasteners (1 per pupil plus spares – see image in presentation) Scissors Sticky tape Glue sticks Optional Coloured pencils Hole punches (ideally single hole punches) Pre-made models of each mechanism, for demonstration Download the activity sheets for free! The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. All activity sheets and supporting resources for this KS1 DT activity are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your learning highlights with us @IETeducation.
Investigating simple linkages
IETEducationIETEducation

Investigating simple linkages

(1)
Looking at linkages using card models In this activity pupils will make models of three simple linkages from card. This is a fun STEM activity and a great way for KS2 to learn all about simple linkages. This resource could be used as a stand-alone activity or as an introduction to a design and make project, such as a greetings card with moving parts, a moving poster or display or a ‘grabber’ to pick things up. Activity: It can be advantageous to use a hole punch to create the holes where needed as this reduces the risk of tearing. Alternatively, the holes could be made by pushing through the card with a sharp pencil, into a piece of modelling clay. If tearing does occur, this can be addressed by using sticky tape on the rear of the part or background. For a moving pivot, the fastener goes through the two moving card parts and is opened up; for a fixed pivot, the fastener goes through a moving part and the background is opened up. Guides can be attached using sticky tape at each end. Whilst glue could be used, in practice this may not provide a sufficiently strong joint. As an extension activity students could produce a composite linkage that changes a single input motion into different types of output motion. Alternatively, students could create a moving model of an animal. The presentation can be downloaded below and includes detailed images for the making tasks plus additional support information for the teacher, such as examples of linkages made by pupils. Tools/resources required Copies of the linkages handout, printed on card, 1 per pupil (plus spares) Scissors Sticky tape Glue sticks Optional: Hole punches (ideally single hole punches) Pre-made models of each linkage, for demonstration The engineering context A mechanism is a group of parts that allow or change movement in some way. In practice almost all products that contain moving parts – ranging from scissors to pop-up books to car engines – include some form of mechanism. Suggested learning outcomes By the end of this activity students will be able to identify the parts of a linkage, they will know how simple linkages change the direction of motion and they will be able to cut and assemble simple linkages using card and scissors. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
How to make a cardboard car
IETEducationIETEducation

How to make a cardboard car

(1)
Design and make a card model of a car body from a net In this engaging engineering activity for kids, pupils will learn about nets, wheels, and axles. They will combine these technologies to make the base and body for a cardboard car. This activity introduces and builds on knowledge of nets to make a complex three-dimensional shape suitable for the body shell of a car. It could be used at KS1 to develop practical skills making nets. Pupils may want to customise their car bodies by adding colour or graphics. However, please note that this needs to be done before the body is stuck together. Furthermore, it can reduce the risk of tearing if this is done before the net is cut out. As an optional extension, students could also customise the design of their vehicles, or even design their own body shells. The fold lines on the handout are all ‘valley’ folds – that means they are on the inside angle when produced. If they were on the outer face they could be referred to as hill folds. This activity will take 30-60 minutes to complete. Tools/resources required Copies of the car body handout, printed on card, 1 per pupil (plus spares) Scissors Glue sticks Optional: Sticky tape or double sided sticky tape Coloured pencils Hole punches (ideally single hole punches) Pre-made model of the example shape, for demonstration (this could be made large size, for example by printing out on A3 card) The engineering context Nets are used to make almost all forms of card packaging, ranging from simple cereal boxes with clear polymer ‘windows’, to display stands. A large supermarket may contain hundreds of thousands of different nets! Suggested learning outcomes By the end of this activity learners will know that 3D shapes can be constructed from nets using folds and tabs and they will be able to make a complex 3D shape from a 2D net. Download the activity sheets for free! All activity sheets, worksheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Make a doorbell circuit
IETEducationIETEducation

Make a doorbell circuit

(0)
Learn how to make a doorbell circuit in this fun STEM activity for KS2 This fun STEM activity for kids will teach you all about electrical switches and will show you how to build your own doorbell circuit! In this activity pupils will assemble a doorbell circuit. This develops understanding of how switches are used and how electrical circuits function. This could be used as a KS2 engineering activity or as a design and make or general STEM project. The presentation, which can be downloaded below, includes an image of the circuit and detailed instructions on preparing and joining the wires. As an alternative switch for an extension activity, a ‘blister switch’ is an improvement on the metal foil switch. It comprises of two pieces of foil, each connected to the circuit, but separated by a piece of card in which a square or circle is cut. The foil needs to be taut over the cut-out hole. When the top piece of foil is pressed, this should make a connection; and when pressure is released, the foil should cease to make contact. This activity will take approximately 70 – 90 minutes. Tools/resources required Projector/Whiteboard Components: 4 x AA batteries in holder Buzzers (e.g. Miniature Electronic Buzzer 6v) 3 lengths of wire, each 100-150 mm long (only a single length is required if a battery holder with attached wires is used; no wires will be needed if the buzzer also has attached wires) 2 metal split pin fasteners per pupil A7 card, 1 piece per pupil Sticky tape or electrical insulation tape. (Potential sources for the components include Rapid online and TTS group) If needed: Wire cutters/strippers Optional: Hole punches (ideally single hole punches) A7 card, 1 per pupil Metal foil A4 card and coloured pencils Scissors Pre-made model of the circuit, for demonstration The engineering context Circuits form the basis of all electrical equipment, ranging from lighting in home to televisions and computers. An electrical circuit is a group of components that are connected together, typically using wires. The wires are usually copper metal, which is highly conductive, coated with insulating plastic, to prevent electric shocks. The circuit must be continuous (i.e. have no breaks) to allow electricity to flow through the components and back to its source, such as a battery. Switches operate as an input device that make a gap in the circuit to stop electricity flowing when they are open. A circuit will normally also have at least one output device, such as a buzzer to produce sound or a bulb to produce light. Suggested learning outcomes By the end of this project students will be able to construct an electrical switch and they will also be able to understand that a complete circuit is required for electricity to flow. Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs.
3D shapes nets - practical activity
IETEducationIETEducation

3D shapes nets - practical activity

(1)
Using 2D nets to make 3D shapes Make 3D shapes using cube nets then use this understanding to build a 3D pyramid. This activity introduces the concept of making 3D shapes using 2D nets. Participants use shape nets, to make three-dimensional shapes from two-dimensional images including a cube and pyramid. Activity info, teachers’ notes and curriculum links In this series of activities, pupils will learn about nets and wheels and axles. They will combine these technologies to make the base and body for a vehicle made from card. It could be used at Key Stage 1 to introduce nets and develop practical skills. All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation Tools/resources required Copies of the nets pyramid and nets cube handouts, printed on card, 1 per pupil (plus spares) Scissors Glue sticks Optional Sticky tape or double-sided sticky tape Pre-made models of each shape, for demonstration (these could be made large size, for example by printing out on A3 card) Download the activity sheets for free! All activity sheets and supporting resources are free to download and are fully editable, so you can tailor them to your students’ and your schools’ needs. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland, and Wales. And please do share your classroom learning highlights with us @IETeducation
Product design: create an ergonomic shopping bag
IETEducationIETEducation

Product design: create an ergonomic shopping bag

(1)
Designing an ergonomic shopping bag carrier for older adults In this activity students will design an ergonomic product aimed at older adults aged 60 and above. They will make use of anthropometric data to ensure that the product is fit for purpose. It’s an ideal product design lesson as it focusses on how ergonomics and anthropometric data can be used for making a shopping bag. This is one of a set of resources developed to aid the teaching of the secondary national curriculum, particularly KS3, supporting the teaching in design and technology (DT). Our teaching resources explain the concepts of ergonomics and anthropometrics. Using this information students will design a product that assists with carrying several shopping bags in just one hand, ensuring it’s ergonomically designed for the carrier’s comfort. They’ll use anthropometric data to tailor the product to the target audience while considering its aesthetic appeal. After sketching and annotating their shopping bag designs, students share their work with a partner who will give feedback on what works well as well as what might be improved. Download our activity overview and presentation and ergonomic product design handout for a detailed lesson plan for teaching students about ergonomic design. What does anthropometric mean in design and technology (DT)? In design and technology (DT), anthropometric data refers to measurements of the human body. This might include measurements like hand size, height, and limb proportions. When students design products, they can use anthropometric data to ensure their product designs are comfortable, safe, and efficient for the intended users. The engineering context Designers must consider how people will interact with their products and systems. The use of ergonomics and anthropometric data allows them to make sure their products are comfortable and efficient to use. Suggested learning outcomes Students will be able to design an ergonomic product (specifically, a shopping bag) that meets the needs of older adults. They’ll understand what is meant by anthropometric data and be able to use it for aid the design of a product. They’ll also be able to communicate their design ideas using sketches, notes and annotations. Download our activity sheet and related teaching resources The activity sheet includes teachers’ notes, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved nations; England, Northern Ireland, Scotland and Wales. All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. Please do share your highlights with us @IETeducation.
Understanding ergonomics and anthropometrics
IETEducationIETEducation

Understanding ergonomics and anthropometrics

(0)
Measuring sizes of hands and presenting data Designers must consider how people will interact with their products and systems. The use of ergonomics and anthropometric data allows them to make sure their products are comfortable and efficient to use. This resource focuses on ergonomics in GCSE DT and the use of anthropometric data. Activity info, teachers’ notes and curriculum links An engaging KS4 activity in which students will collect data relating to the hand sizes of different people for use in designing a shopping bag carrier. It will build knowledge and understanding of how ergonomics and anthropometric data and anthropometric measurements are gathered for use in product design. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Linking to key exam boards such as GCSE DT providers AQA and Edexcel. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Testing pulley systems
IETEducationIETEducation

Testing pulley systems

(0)
Testing the operation of pulley systems and calculating their mechanical advantage This GCSE maths resource looks at how pulleys work and is fully-curriculum linked. Download the resource for free to teach KS4 pulleys to your class. What are the advantages of a pulley system? Mechanical systems allow us to perform tasks that would otherwise be very difficult, enabling us to lift objects that would otherwise be far too heavy to move. For example, cranes on building sites that move heavy materials. This GCSE mathematics resource focuses on testing pulley systems and calculating their mechanical advantage. Activity info, teachers’ notes and curriculum links An engaging activity in which students will will test and calculate the mechanical advantage of three different examples of simple pulley systems designed to lift loads. It will build knowledge and understanding of how pulley systems work, along with improving related numeracy skills. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Modelling pulley systems
IETEducationIETEducation

Modelling pulley systems

(0)
Model and construct 3 simple pulley systems, designed to lift loads Mechanical systems allow us to perform tasks that would otherwise be very difficult, such as pulley systems that lift objects that would otherwise be far too heavy to move. For example, cranes on building sites that move heavy materials. This KS4 maths resource focuses on the use and application of pulley systems. Activity info, teachers’ notes and curriculum links An engaging activity in which students will model and construct three different examples of pulley systems designed to lift loads. It will build knowledge and understanding of how pulley systems work and their practical uses. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation
Produce a treadle pump
IETEducationIETEducation

Produce a treadle pump

(0)
Make a working prototype of a treadle pump that is designed to help people living in remote villages source water. Learners will create a functional and fully operational prototype of a treadle pump designed to lift water from wells in this task. This project aims to enhance their ability to effectively design products that address social needs. It will also improve their manufacturing skills and capacity to choose suitable materials, tools, and equipment. This activity can be utilised as the final part of a four-lesson unit, following the activities “Investigating Problems Faced by People in Remote Areas,” “Methods of Obtaining Water,” and “Card Modelling of a Treadle Pump.” Alternatively, it can be used as a standalone main lesson to provide comprehensive knowledge and understanding of the subject matter. How long will this activity take? This activity will take approximately 60-120 minutes to complete. Download the activity sheet below for a full lesson plan. The engineering context Integrating social issues into the design process holds significant importance in all GCSE Design and Technology 9-1 courses, as well as the GCSE Engineering 9-1 course. Students are obligated to learn about this crucial aspect. Furthermore, they must also learn about carefully selecting and utilising materials, tools, and equipment to create prototypes. The knowledge acquired through these courses can extend beyond the classroom, finding practical applications in the future when designing and producing products to meet the social needs of individuals and communities. Suggested learning outcomes By the end of this activity, students will be able to manufacture a working prototype of a treadle pump for people living in a remote village, they will be able to select appropriate materials, tools and equipment for the activity, and they will be able to understand the use and application of wasting, joining, forming and finishing techniques. Download the free activity sheet! All activity sheets and supporting resources are free to download, and all the documents are fully editable so that you can tailor them to your students and your schools’ needs. The activity sheet includes teacher notes, guidance, helpful web links, and links (where appropriate) to the national curriculum in the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Please share your classroom learning highlights with us @IETeducation
Methods of obtaining water
IETEducationIETEducation

Methods of obtaining water

(0)
Design a treadle pump This is one of a series of GCSE DT resources designed to support teachers to deliver high-quality, inspiring lessons. Each resource covers a key topic from one or more of the specifications for these subjects. This resource focuses on designing ideas to solve the problem of water supply faced by people living in remote villages. One challenge that many people living in dry, remote areas face is the sourcing of water to irrigate crops and therefore grow food. A treadle pump can be used to make this much easier and far less time consuming. Activity info, teachers’ notes and curriculum links How does a water pump work? In this activity, learners will produce design ideas for a treadle pump that can raise water from wells. It will develop their ability to design products that meet a social need. It will also develop their skills in the drawing techniques used by designers and engineers to communicate their ideas. The activity sheet includes teacher notes, guidance, useful web links, and links (where appropriate) to the national curriculum in each of the four devolved UK nations; England, Northern Ireland, Scotland and Wales. Download the activity sheets for free! All activity sheets and supporting resources are free to download, and all the documents are fully editable, so you can tailor them to your students’ and your schools’ needs. And please do share your classroom learning highlights with us @IETeducation